Abstract
As a challenging task in visual information retrieval, open-ended long-form video question answering automatically generates the natural language answer from the referenced video content according to the given question. However, the existing video question answering works mainly focus on the short-form video, which may be ineffectively applied for long-form video question answering directly, due to the insufficiency of modeling the semantic representation of long-form video content. In this paper, we study the problem of open-ended long-form video question answering from the viewpoint of hierarchical multimodal conditional adversarial network learning. We propose the hierarchical attentional encoder network to learn the joint representation of long-form video content and given question with adaptive video segmentation. We then devise the reinforced decoder network to generate the natural language answer for openended video question answering with multi-modal conditional adversarial network learning. We construct three large-scale open-ended video question answering datasets. The extensive experiments validate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.