Abstract

Layered double perovskites have the potential to further expand the vast space of optoelectronic properties and applications of halide perovskites. Among the ∼60 known members, to date only the ⟨111⟩-oriented layered double perovskites, Cs4Cd1-xMnxBi2Cl12, have shown efficient photoluminescence (PL). The replacement of Bi with Sb in these materials was investigated, resulting in two new families of layered inorganic perovskite alloys with full solubility. The first, Cs4Cd1-xMnxSb2Cl12, exhibits a PL emission at 605 nm ascribed to Mn2+ centers, with a maximum quantum yield of 28.5%. The second, Cs4Cd0.8Mn0.2(Sb1-yBiy)2Cl12, contains a fixed amount of Mn2+ and Cd2+ but variable Sb3+ and Bi3+ concentrations. We observed a decreased efficiency of the Cs4Cd1-xMnxSb2Cl12 family compared to that of Cs4Cd1-xMnxBi2Cl12, which was attributed to a decreased spin-orbit and Jahn-Teller couplings in Sb and the subsequent increased electronic delocalization. The present work lays out a roadmap to achieve high photoluminescence efficiencies in layered double perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.