Abstract
Theultrahigh-sensitive detection of H2S is reportedusing a novel dual-ligand metal-organic framework (MOF) electrochemiluminescence (ECL) sensor. By combining tetrakis(4-carboxyphenyl) porphyrin (TCPP) and 1,3,6,8-tetrakis(4-carboxyphenyl) pyrene (TBAPy) as ligands and employing zirconium as the metal source, a spindle-shaped Zr-PyTCPPMOF was successfully designed and synthesized. Notably, the multiple nitrogen structures of porphyrin provided abundant binding sites for sulfur (S), further enhancing the ECL signal of Zr-PyTCPPMOF. The sensor shows a good linear relationship in the 0.01-100μM range, with a detection limit reaching 1.18nM (S/N = 3). When analyzingactual serum samples, the recovery was between 96.6 and 106.2%. Ultimately, the dual-ligand ECL platform based on Zr-PyTCPPMOF achieved trace detection of H2S, which is expected to provide reliable technical support for early environmental monitoring and disease diagnosis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have