Abstract

Electrooxidation of biomass‐derived glycerol which is regarded as a main byproduct of industrial biodiesel production, is an innovative strategy to produce value‐added chemicals, but currently showcases slow kinetics, limited Faraday efficiency, and unclear catalytic mechanism. Herein, we report high‐efficiency electrooxidation of glycerol into formate via a Cu doped NiCo alloy catalyst supported on nickel foam (Cu‐NiCo/NF) in a coupled system paired with nitrate reduction. The designed Cu‐NiCo/NF delivers only 1.23 V vs. RHE at 10 mA cm‐2, and a record Faraday efficiency of formate of 93.8%. The superior performance is ascribed to the rapid generation of NiIII‐OOH and CoIII‐OOH and favorable coupling of surface *O with reactive intermediates. Using Cu‐NiCo/NF as a bifunctional catalyst, the coupled system synchronously produces NH3 and formate, showing 290 mV lower than the coupling of hydrogen evolution reaction, together with excellent long‐term stability for up to 144 h. This work lays out new guidelines and reliable strategies from catalyst design to system coupling for biomass‐derived electrochemical refinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.