Abstract

Electrooxidation of biomass-derived glycerol which is regarded as a main byproduct of industrial biodiesel production, is an innovative strategy to produce value-added chemicals, but currently showcases slow kinetics, limited Faraday efficiency, and unclear catalytic mechanism. Herein, we report high-efficiency electrooxidation of glycerol into formate via a Cu doped NiCo alloy catalyst supported on nickel foam (Cu-NiCo/NF) in a coupled system paired with nitrate reduction. The designed Cu-NiCo/NF delivers only 1.23 V vs. RHE at 10 mA cm-2, and a record Faraday efficiency of formate of 93.8%. The superior performance is ascribed to the rapid generation of NiIII-OOH and CoIII-OOH and favorable coupling of surface *O with reactive intermediates. Using Cu-NiCo/NF as a bifunctional catalyst, the coupled system synchronously produces NH3 and formate, showing 290 mV lower than the coupling of hydrogen evolution reaction, together with excellent long-term stability for up to 144 h. This work lays out new guidelines and reliable strategies from catalyst design to system coupling for biomass-derived electrochemical refinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.