Abstract

We present the one-orbital ensemble self-consistent field (OE-SCF), an alternative orbital-free DFT solver that extends the applicability of DFT to beyond nanoscale system sizes, retaining the accuracy required to be predictive. OE-SCF treats the Pauli potential as an external potential updating it iteratively, dramatically outperforming current solvers because only few iterations are needed to reach convergence. OE-SCF enabled us to carry out the largest ab initio simulations for silicon-based materials to date by employing only 1 CPU. We computed the energy of bulk-cut Si nanoparticles as a function of their diameter up to 16 nm, and the polarization and interface charge transfer when a Si slab is sandwiched between two metal slabs where lattice matching mandated a large contact area. Additionally, OE-SCF opens the door to adopting even more accurate functionals in orbital-free DFT simulations while still tackling large system sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call