Abstract

UV/sulfite systems with oxygen have recently been considered as advanced oxidation processes in view of the participation of oxysulfur radicals. However, the contribution of •OH and the efficiency of destructing emerging contaminants (ECs) in water remain largely unclear. Here, the UV/S(IV) process was applied with natural reoxygenation to degrade two typical ECs, diethyl phthalate (DEP) and bisphenol A (BPA) showing different properties. Solution pH played the key role in determining the reactive species, and both DEP and BPA were more favorably degraded at more alkaline conditions with higher utilization efficiency of SO32−. Specifically, the H•, O2•−, •OH and SO3•− were identified at acidic condition, but the amount of •OH accumulated significantly with the elevation of pH. Competitive quenching experiments showed that eaq− and •OH dominated the degradation of DEP and BPA at alkaline condition, respectively. Besides, DEP showed higher quantum efficiency for the indirect photolysis and mineralization degree than that of BPA at pH 9.2 mainly due to the direct use of the primary photoproduct. The possible transformation mechanisms of S(IV) and mineralization routes of both pollutants were proposed. This study may provide new insights into the mechanisms involved in UV/S(IV) process and a promising alternative for efficient removal of ECs in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.