Abstract

In this paper, we present a new tri-parametric derivative-free family of Hansen-Patrick type methods for solving nonlinear equations numerically. The proposed family requires only three functional evaluations to achieve optimal fourth order of convergence. In addition, acceleration of convergence speed is attained by suitable variation of free parameters in each iterative step. The self-accelerating parameters are estimated from the current and previous iteration. These self-accelerating parameters are calculated using Newton's interpolation polynomials of third and fourth degrees. Consequently, the R-order of convergence is increased from 4 to 7, without any additional functional evaluation. Furthermore, the most striking feature of this contribution is that the proposed schemes can also determine the complex zeros without having to start from a complex initial guess as would be necessary with other methods. Numerical experiments and the comparison of the existing robust methods are included to confirm the theoretical results and high computational efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call