Abstract

In this paper, we present an iterative three-point method with memory based on the family of King's methods to solve nonlinear equations. This proposed method has eighth order convergence and costs only four function evaluations per iteration which supports the Kung-Traub conjecture on the optimal order of convergence. An acceleration of the convergence speed is achieved by an appropriate variation of a free parameter in each step. This self accelerator parameter is estimated using Newton's interpolation polynomial of fourth degree. The order of convergence is increased from 8 to 12 without any extra function evaluation. Consequently, this method, possesses a high computational efficiency. Finally, a numerical comparison of the proposed method with related methods shows its effectiveness and performance in high precision computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.