Abstract
It is essential to develop an efficient technology for the elimination of refractory contaminants due to their high toxicity. In this study, a novel underwater bubbling pulsed discharge plasma (UBPDP) system was proposed for the degradation of Orange II (OII). The degradation performance experiments showed that by enhancing the peak voltage and pulse frequency, the degradation efficiency of OII increased gradually. The removal efficiencies under different air flow rates were close. Reducing OII concentration and solution conductivity could promote the elimination of OII. Compared with neutral and alkaline conditions, acidic condition was more beneficial to OII degradation. The active species including ·OH, ·O2-, 1O2, and hydrated electrons were all involved in OII degradation. The concentrations of O3 and H2O2 in OII solution were lower than those in deionized water. During discharge, the solution pH increased while conductivity decreased. The variation of UV-vis spectra with treatment time indicated the effective decomposition of OII. Possible degradation pathways were speculated based on LC-MS. The toxicity of intermediate products was predicted by the Toxicity Estimation Software Tool. Coexisting constituents including Cl-, SO42-, HCO3-, and humic acid had a negative effect on OII removal. Finally, the comparison with other technology depicted the advantage of the UBPDP system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have