Abstract
Novel ZnS-ZnFe2O4 composites were successfully synthesized via a simple and green hydrothermal route. X-ray diffraction (XRD) patterns of the synthesized composite proved the presence of both ZnS and ZnFe2O4. The other characteristics of the composites were further characterized in detail using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and vibrating sample magnetometry (VSM). The performance of ZnS-ZnFe2O4 in the presence of persulfate (PS, K2S2O8) as a co-catalyst was tested for degrading rhodamine B (RhB) under UV light illumination. ZnS-ZnFe2O4 composites could remove about 97.67% of RhB in 90 min, which was much higher removal than either ZnS or ZnFe2O4 alone. Moreover, the recovery of catalyst and its recycling performance were found to be good after testing three times. A feasible mechanism analysis of RhB degradation was validated by simple classical quenching experiments. The enhanced performance was attributed to the high-efficiency separation rate of photo induced electron-hole pairs and highly active free radicals of O2-, OH and SO4-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.