Abstract

Rare earth ions with d-f transitions (Ce3+, Eu2+) have emerged as promising candidates for electroluminescence applications due to their abundant emission spectra, high light conversion efficiency, and excellent stability. However, directly injecting charge into 4f orbitals remains a significant challenge, resulting in unsatisfied external quantum efficiency and high operating voltage in rare earth light-emitting diodes. Herein, we propose a scheme to solve the difficulty by utilizing the energy transfer process. X-ray photoelectron spectroscopy and transient absorption spectra suggest that the Cs3CeI6 luminescence process is primarily driven by the energy transfer from the I2-based self-trapped exciton to the Ce-based Frenkel exciton. Furthermore, energy transfer efficiency is largely improved by enhancing the spectra overlap between the self-trapped exciton emission and the Ce-based Frenkel exciton excitation. When implemented as an active layer in light-emitting diodes, they show the maximum brightness and external quantum efficiency of 1073 cd m−2 and 7.9%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.