Abstract

Affect decoding through brain-computer interfacing (BCI) holds great potential to capture users’ feelings and emotional responses via non-invasive electroencephalogram (EEG) sensing. Yet, little research has been conducted to understand efficient decoding when users are exposed to dynamic audiovisual contents. In this regard, we study EEG-based affect decoding from videos in arousal and valence classification tasks, considering the impact of signal length, window size for feature extraction, and frequency bands. We train both classic Machine Learning models (SVMs and k -NNs) and modern Deep Learning models (FCNNs and GTNs). Our results show that: (1) affect can be effectively decoded using less than 1 minute of EEG signal; (2) temporal windows of 6 and 10 seconds provide the best classification performance for classic Machine Learning models but Deep Learning models benefit from much shorter windows of 2 seconds; and (3) any model trained on the Beta band alone achieves similar (sometimes better) performance than when trained on all frequency bands. Taken together, our results indicate that affect decoding can work in more realistic conditions than currently assumed, thus becoming a viable technology for creating better interfaces and user models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call