Abstract

Modern-day computers are characterized by a striking contrast between the processing power of the CPU and the latency of main memory accesses. If the data processed is both large compared to processor caches and sparse or high-dimensional in nature, as is commonly the case in complex network research, the main memory latency can become a performace bottleneck. In this article, we present a cache-efficient data structure, a variant of a linear probing hash table, for representing edge sets of such networks. The performance benchmarks show that it is, indeed, quite superior to its commonly used counterparts in this application. In addition, its memory footprint only exceeds the absolute minimum by a small constant factor. The practical usability of our approach has been well demonstrated in the study of very large real-world networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.