Abstract

Transactional memory systems providing snapshot isolation enable concurrent access to shared data without incurring aborts on read-write conflicts. Reducing aborts is extremely relevant as it leads to higher concurrency, greater performance, and better predictability. Unfortunately, snapshot isolation does not provide serializability as it allows certain anomalies that can lead to subtle consistency violations. While some mechanisms have been proposed to verify the correctness of a program utilizing snapshot isolation transactions, it remains difficult to repair incorrect applications. To reduce the programmer’s burden in this case, we present a technique based on dynamic code and graph dependency analysis that automatically corrects existing snapshot isolation anomalies in transactional memory programs. Our evaluation shows that corrected applications retain the performance benefits characteristic of snapshot isolation over conventional transactional memory systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.