Abstract

The development of potentially active peptides for specific targets is critical for the modern pharmaceutical industry's growth. In this study, we present an efficient computational framework for the discovery of active peptides targeting a specific pharmacological target, which combines a conditional variational autoencoder (CVAE) and a classifier named TCPP based on the Transformer and convolutional neural network. In our example scenario, we constructed an active cyclic peptide library targeting interleukin-17C (IL-17C) through a library-based in vitro selection strategy. The CVAE model is trained on the preprocessed peptide data sets to generate potentially active peptides and the TCPP further screens the generated peptides. Ultimately, six candidate peptides predicted by the model were synthesized and assayed for their activity, and four of them exhibited promising binding affinity to IL-17C. Our study provides a one-stop-shop for target-specific active peptide discovery, which is expected to boost up the process of peptide drug development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.