Abstract
Computationally efficient algorithms are presented for the computation of the effect of flat wire ends (end caps) in the common thin wire model. A uniform charge distribution over the surface of the end cap is assumed, and the full or exact kernel of the electric field integral equation formulation for cylindrical wires is used. The algorithms have been implemented in a highly efficient, low order, full kernel method of moments code for the analysis of relatively thick wire antennas and scatterers. The extra computational cost of including the end cap effect is small. The code has been applied to the analysis of a thick linear dipole and the results correspond very well with those of a recently published study using a much more computationally expensive implementation of the magnetic field integral equation with high order discretization methods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.