Abstract

AbstractA Multi-Feature Cube (MF-Cube) query is a complex-data-mining query based on data cubes, which computes the dependent complex aggregates at multiple granularities. Existing computations designed for simple data cube queries can be used to compute distributive and algebraic MF-Cubes queries. In this paper we propose an efficient computation of holistic MF-Cubes queries. This method computes holistic MF-Cubes with PDAP (Part Distributive Aggregate Property). The efficiency is gained by using dynamic subset data selection strategy (Iceberg query technique) to reduce the size of materialized data cube. Also for efficiency, this approach adopts the chunk-based caching technique to reuse the output of previous queries. We experimentally evaluate our algorithm using synthetic and real-world datasets, and demonstrate that our approach delivers up to about twice the performance of traditional computations.KeywordsDecision Support SystemEfficient ComputationComplex QueryData CubeAggregate FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.