Abstract

In many geostatistical applications, spatially discretized unknowns are conditioned on observations that depend on the unknowns in a form that can be linearized. Conditioning takes several matrix–matrix multiplications to compute the cross-covariance matrix of the unknowns and the observations and the auto-covariance matrix of the observations. For large numbers n of discrete values of the unknown, the storage and computational costs for evaluating these matrices, proportional to n2, become strictly inhibiting. In this paper, we summarize and extend a collection of highly efficient spectral methods to compute these matrices, based on circulant embedding and the fast Fourier transform (FFT). These methods are applicable whenever the unknowns are a stationary random variable discretized on a regular equispaced grid, imposing an exploitable structure onto the auto-covariance matrix of the unknowns. Computational costs are reduced from O(n2) to O(nlog2n) and storage requirements are reduced from O(n2) to O(n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.