Abstract

Circulant embedding is a technique that has been used to generate realizations from certain real-valued Gaussian stationary processes. This technique has two potential advantages over competing methods for simulating time series. First, the statistical properties of the generating procedure are exactly the same as those of the target stationary process. Second, the technique is based upon the discrete Fourier transform and hence is computationally attractive when this transform is computed via a fast Fourier transform (FFT) algorithm. In this paper we show how, when used with a standard ‘powers of two’ FFT algorithm, circulant embedding can be readily adapted to handle complex-valued Gaussian stationary processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.