Abstract

This paper deals with the application of a moving grid method to the solution of a phase-field model for dendritic growth in two- and three-dimensions. A mesh is found as the solution of an optimization problem that automatically includes the boundary conditions and is solved using a multi-grid approach. The governing equations are discretized in space by linear finite elements and a split time-level scheme is used to numerically integrate in time. One novel aspect of the method is the choice of a regularized monitor function. The moving grid method enables us to obtain accurate numerical solutions with much less degree of freedoms. It is demonstrated numerically that the tip velocity obtained by our method is in good agreement with the previously published results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.