Abstract

Frequency-bin qudits constitute a promising tool for quantum information processing, but their high dimensionality can make for tedious characterization measurements. Here we introduce and compare compressive sensing and Bayesian mean estimation for recovering the spectral correlations of entangled photon pairs. Using a conventional compressive sensing algorithm, we reconstruct joint spectra with up to a 26-fold reduction in measurement time compared to the equivalent raster scan. Applying a custom Bayesian model to the same data, we then additionally realize reliable and consistent quantification of uncertainty. These efficient methods of biphoton characterization should advance our ability to use the high degree of parallelism and complexity afforded by frequency-bin encoding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call