Abstract
We propose three methods for the color quantization of superpixel images. Prior to the application of each method, the target image is first segmented into a finite number of superpixels by grouping the pixels that are similar in color. The color of a superpixel is given by the arithmetic mean of the colors of all constituent pixels. Following this, the superpixels are quantized using common splitting or clustering methods, such as median cut, k-means, and fuzzy c-means. In this manner, a color palette is generated while the original pixel image undergoes color mapping. The effectiveness of each proposed superpixel method is validated via experimentation using different color images. We compare the proposed methods with state-of-the-art color quantization methods. The results show significantly decreased computation time along with high quality of the quantized images. However, a multi-index evaluation process shows that the image quality is slightly worse than that obtained via pixel methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have