Abstract

This paper presents efficient coding and mapping algorithms that lead to a significant speed improvement in low bit rate H.263/H263+ video encoding while maintaining high video-reproduction quality. First, by exploiting the statistical properties of low resolution and slowly varying video sequences, we reduce significantly the computation times of the most computationally intensive components of video coding, particularly the discrete cosine transform, the inverse discrete cosine transform, quantization, and motion estimation. We also map some of the single instruction multiple data (SIMD)-oriented functions onto Intel's MMX architecture. The developed algorithms are implemented using our public-domain H.263/H.263+ encoder/decoder software. Using the above algorithms, our H.263/H.263+ baseline video-encoder implementation can encode more than 15 fps in QCIF resolution on a Pentium MMX 200-MHz computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.