7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1049/cvi2.12319
Copy DOIJournal: IET Computer Vision | Publication Date: Nov 25, 2024 |
License type: CC BY-NC-ND 4.0 |
AbstractEnsuring the safety of water airport runways is essential for the correct operation of seaplane flights. Among other tasks, airport operators must identify and remove various objects that may have drifted into the runway area. In this paper, the authors propose a complete and embedded‐friendly waterway obstacle detection pipeline that runs on a camera‐equipped drone. This system uses a class‐agnostic version of the YOLOv7 detector, which is capable of detecting objects regardless of its class. Additionally, through the usage of the GPS data of the drone and camera parameters, the location of the objects are pinpointed with 0.58 m Distance Root Mean Square. In our own annotated dataset, the system is capable of generating alerts for detected objects with a recall of 0.833 and a precision of 1.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.