Abstract

An electrochemical electrode physisorbed with Ni(cyclam) complex molecules containing tetraphenylborate ions (BPh4(-)) as counteranions shows catalytic activity for the reduction reaction of CO2 to CO in an aqueous electrolyte, superior to that of an electrode physisorbed with conventional [Ni(cyclam)]Cl2 complex molecules. The BPh4(-)-containing Ni(cyclam) is inferred as having high hydrophobicity based on its Hansen solubility parameter (HSP), with an interaction sphere excluding HSPs of water in a three-dimensional vector space. The high hydrophobicity of BPh4(-)-containing Ni(cyclam) molecules inhibits their dissolution into aqueous electrolyte and retains their immobilization onto the electrode surface, which we believe to result in the improved catalytic activity of the electrode physisorbed with them. HSP analysis also provides an optimized mixing ratio of solvents dissolving BPh4(-)-containing Ni(cyclam) molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.