Abstract

In this paper, we propose an efficient beam training technique for millimeter-wave (mmWave) communications. Beam training should be performed frequently when some mobile users are under high mobility to ensure the accurate acquisition of the channel state information. To reduce the resource overhead caused by frequent beam training, we introduce a dedicated beam training strategy which sends the training beams separately to a specific high mobility user (called a target user) without changing the periodicity of the conventional beam training. The dedicated beam training requires a small amount of resources because the training beams can be optimized for the target user. To satisfy the performance requirement with a low training overhead, we propose the optimal training beam selection strategy which finds the best beamforming vectors yielding the lowest channel estimation error based on the target user’s probabilistic channel information. This dedicated beam training is combined with the greedy channel estimation algorithm that accounts for sparse characteristics and temporal dynamics of the target user’s channel. Our numerical evaluation demonstrates that the proposed scheme can maintain good channel estimation performance with significantly less training overhead compared to the conventional beam training protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.