Abstract
This paper investigates wireless-powered cell-free systems, in which the users send their uplink data signal while simultaneously harvesting energy from network nodes and user terminals – including the transmitting user terminal itself – by performing self-energy recycling. In this rather general setting, a closed-form lower bound of the amount of harvested energy and the achieved signal-to-interference-plus-noise ratio expressions are derived. Then, to improve the energy efficiency, we formulate the problem of minimizing the users' battery energy usage while satisfying minimum data rate requirements. Due to the non-convexity of the problem, a novel alternating optimization algorithm is proposed, and its proof of convergence is provided. Finally, numerical results show that the proposed method is more efficient than a state-of-art algorithm in terms of battery energy usage and outage rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.