Abstract

Antibacterial agents with high antibacterial efficiency and bacteria-binding capability are highly desirable. Herein, we describe the successful preparation of Cu2WS4 nanocrystals (CWS NCs) with excellent antibacterial activity. CWS NCs with small size (∼20 nm) achieve more than 5 log (>99.999%) inactivation efficiency of both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) at low concentration (<2 μg mL-1) with or without ambient light, which is much better than most of the reported antibacterial nanomaterials (including Ag, TiO2, etc.) and even better than the widely used antibiotics (vancomycin and daptomycin). Antibacterial mechanism study showed that CWS NCs have both enzyme-like (oxidase and peroxidase) properties and selective bacteria-binding ability, which greatly facilitate the production of reactive oxygen species to kill bacteria. Animal experiments further indicated that CWS NCs can effectively treat wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). This work demonstrates that CWS NCs have the potential as effective antibacterial nanozymes for the treatment of bacterial infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call