Abstract
This paper presents an iterative convex programming algorithm for the complex ascent trajectory planning problem. Due to the nonlinear dynamics and constraints, ascent trajectory planning problems are always difficult to be solved rapidly. With deterministic convergence, convex programming is becoming increasingly attractive to such problems. In this paper, first, path constraints (dynamic pressure, load and bending moment) are convexified by a change of variables and a reasonable approximation. Then, based on the Newton–Kantorovich/Pseudospectral (N–K/PS) approach, the dynamic equations are transcribed into linearized algebraic equality constraints with a given initial guess, and the ascent trajectory planning problem is formulated as a convex programming problem. At last, by iteratively solving the convex programming problem with readily available convex optimization methods and successively updating the initial guess with the Newton–Kantorovich iteration, the trajectory planning problem can be solved accurately and rapidly. The convergence of the proposed iterative convex programming method is proved theoretically, and numerical simulations show that the method proposed can potentially be implemented onboard a launch vehicle for real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.