Abstract

This contribution focuses on a class of Galois field used to achieve fast finite field arithmetic which we call an Optimal Extension Field (OEF), first introduced in [3]. We extend this work by presenting an adaptation of Itoh and Tsujii's algorithm for finite field inversion applied to OEFs. In particular, we use the facts that the action of the Frobenius map in GF (pm) can be computed with only m-1 subfield multiplications and that inverses in GF (p) may be computed cheaply using known techniques. As a result, we show that one extension field inversion can be computed with a logarithmic number of extension field multiplications. In addition, we provide new extension field multiplication formulas which give a performance increase. Further, we provide an OEF construction algorithm together with tables of Type I and Type II OEFs along with statistics on the number of pseudo-Mersenne primes and OEFs. We apply this new work to provide implementation results using these methods to construct elliptic curve cryptosystems on both DEC Alpha workstations and Pentium-class PCs. These results show that OEFs when used with our new inversion and multiplication algorithms provide a substantial performance increase over other reported methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.