Abstract

As a valid metric of metric-measure spaces, Gromov-Wasserstein (GW) distance has shown the potential for matching problems of structured data like point clouds and graphs. However, its application in practice is limited due to the high computational complexity. To overcome this challenge, we propose a novel importance sparsification method, called Spar-GW, to approximate GW distance efficiently. In particular, instead of considering a dense coupling matrix, our method leverages a simple but effective sampling strategy to construct a sparse coupling matrix and update it with few computations. The proposed Spar-GW method is applicable to the GW distance with arbitrary ground cost, and it reduces the complexity from O ( n 4 ) to O ( n 2 + δ ) for an arbitrary small δ > 0 . Theoretically, the convergence and consistency of the proposed estimation for GW distance are established under mild regularity conditions. In addition, this method can be extended to approximate the variants of GW distance, including the entropic GW distance, the fused GW distance, and the unbalanced GW distance. Experiments show the superiority of our Spar-GW to state-of-the-art methods in both synthetic and real-world tasks. Supplementary materials for this article are available online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call