Abstract

Using a superoperator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is represented by a matrix continued fraction whose coefficients can be obtained from the nonsymmetric block-Lanczos method. The resulting algorithm, which is particularly convenient when large basis sets are used, allows for the calculation of the full spectrum of a system with a computational workload only a few times larger than needed for static polarizabilities within time-independent density-functional perturbation theory. The method is demonstrated with calculation of the spectrum of benzene, and prospects for its application to the large-scale calculation of optical spectra are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.