Abstract

Frost formation is a normal phase transition phenomenon in cold climates, while it usually brings certain troubles to human lives and production. Therefore, it is of great significance to develop frost resistant materials and key technologies. Here, a salt-philic and superhydrophobic surface is designed on a PDMS substrate by femtosecond laser direct writing technology in combination with salt–ethanol–water mixtures droplet treatment. The laser-treated PDMS embedded salt (LTP-S) surface exhibits superhydrophobicity, which alone is a property that can resist the formation of frost and enables a self-cleaning effect. Meanwhile, the salt coating further enhances the frost resistance of the surface by reducing the freezing point temperature. The LTP-S surface is revealed to perform well in frosting-defrosting cycles, washing resistance, chemical corrosion resistance, heating resistance, and long-term air exposure tests as a highly efficient and stable anti-frosting surface. This work demonstrates a facile strategy to fabricate a salt-philic and superhydrophobic surface for efficient anti-frosting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.