Abstract

Genetic research in molecular laboratories relies heavily on directed mutagenesis and gene deletion techniques. In mycobacteria, however, genetic analysis is often hindered by difficulties in the preparation of deletion mutants. Indeed, in comparison to the allelic exchange systems available for the study of other common model organisms, such as Saccharomyces cerevisiae and Escherichia coli, mycobacterial gene disruption systems suffer from low mutant isolation success rates, mostly due to inefficient homologous recombination and a high degree of non-specific recombination. Here, we present a gene deletion system that combines efficient homologous recombination with advanced screening of mutants. This novel methodology allows for gene disruption in three consecutive steps. The first step relies on the use of phage Che9c recombineering proteins for directed insertion into the chromosome of a linear DNA fragment that encodes GFP and confers hygromycin resistance. In the second step, GFP positive and hygromycin resistant colonies are selected, and in the last step, the gfp-hyg cassette is excised from the chromosome, thus resulting in the formation of an unmarked deletion. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the prcSBA operon of Mycobacterium smegmatis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call