Abstract

The development of non-precious metal catalysts in heterogeneous catalytic processes is of great importance to the hydrogenation of quinolines for both theoretical and industrial applications. Herein, an effective non-precious metal catalyst, 58% Fe4Ni6Cu5/MCM-41, was developed to catalyze the hydrogenation of quinolines under the green and mild conditions, which can achieve 97.5% conversion and exceeding 98% selectivity to tetrahydroquinoline in solvent-free at low temperature of 50 °C. Moreover, the acceptable results of the reusability and gram scale-up experiments proved an industrial application potential of the as-prepared catalyst. Meanwhile, in cyclohexane system, 58% Fe4Ni6Cu5/MCM-41 catalyst can further realize a higher activity of the hydrogenation at a lower temperature of 40 °C, achieving 98.2% conversion and 98% selectivity to tetrahydroquinoline. The existence of Fe-Ni and Ni-Cu alloys in Fe4Ni6Cu5/MCM-41 catalyst was demonstrated by TEM, XRD, XPS, H2-TPD, and Raman spectroscopy. And, Fe-Ni and Ni-Cu alloys can be well dispersed onto MCM-41 molecular sieves. For Fe4Ni6Cu5/MCM-41 catalyst, quinoline molecules can be adsorbed by Fe3+ species on the surface of Fe-Ni alloy through the coordination, while hydrogen molecules can be adsorbed and activated by Ni-Cu alloy. Under the synergism of Fe-Ni and Ni-Cu alloys, the highly effective and selective hydrogenation of quinolines was achieved at low temperature and in solvent-free system. The present approach offers a prospective idea for building non-precious metal catalysts to realize the effective hydrogenation of N-heterocyclic compounds under mild conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call