Abstract

As electronics become ever faster and more powerful, there is growing interest in three-dimensional laser-based optical data storage techniques, which can potentially provide efficient storage at densities significantly higher than those that are likely to be available from magnetic media. The development of inexpensive, efficient and robust media has been a major obstacle in optical data storage. However, we have discovered a class of materials that become highly fluorescent on multiphoton absorption of pulses of 800-nm light from a Ti:sapphire oscillator, making them excellent candidate storage media. The materials are inexpensive, of high optical quality, can be processed readily, and can take a number of useful forms, including molecular glasses and highly crosslinked polymers. Three-dimensional data can be stored at high densities in these materials, and are highly robust to readout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.