Abstract

In the area of network performance and discovery, network tomography focuses on reconstructing network properties using only end-to-end measurements at the application layer. One challenging problem in network tomography is reconstructing available bandwidth along all links during multiple source/multiple destination transmissions. The traditional measurement procedures used for bandwidth tomography are extremely time consuming. We propose a novel solution to this problem. Our method counts the fragments exchanged during a BitTorrent broadcast. While this measurement has a high level of randomness, it can be obtained very efficiently, and aggregated into a reliable metric. This data is then analyzed with state-of-the-art algorithms, which correctly reconstruct logical clusters of nodes interconnected by high bandwidth, as well as bottlenecks between these logical clusters. Our experiments demonstrate that the proposed two-phase approach efficiently solves the presented problem for a number of settings on a complex grid infrastructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.