Abstract

The formation of crystal-amorphous (c-a) interfaces by modulating the crystallinity of the material is a promising strategy for the oxygen evolution reaction (OER). Herein, a recrystallization growth at room temperature to regulate the crystallinity of catalysts is reported. The MoFeNi hydroxide precursor was synthesized by the solvothermal method, and then the crystallinity of the material was controlled by adjusting the concentration of Na2S in the immersion solution. These c-a heterogeneous interfaces significantly improved the OER activity of the catalysts while ensuring structural stability. The best catalyst exhibited a low overpotential of 195 mV to reach 10 mA cm−2 in 1 M KOH. It also showed good stability, operating stably at high current densities for 96 h without significant degradation. In addition, the anode of the two-electrode water splitting electrolyzer required only 1.46 V to reach 10 mA cm−2 and operated for a long time without significant degradation. This method will provide new insights and perspectives for developing efficient and stable OER catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.