Abstract

We report efficient and color-stable white light-emitting electrochemical cells (LECs) by combining single-layered blue-emitting LECs with red-emitting color conversion layers (CCLs) on the inverse side of the glass substrate. By judicious choosing of the red-emitting dye doped in CCLs, good spectral overlap between the absorption spectrum of the red-emitting dye and the emission spectrum of the blue-emitting emissive material results in efficient energy transfer and thus sufficient down-converted red emission at low doping concentrations of the red-emitting dye in the CCLs. Low doping concentration is beneficial in reducing self-quenching of the red-emitting dye, rendering efficient red emission. Electroluminescent (EL) measurements show that the peak external quantum efficiency and the peak power efficiency of the white LECs employing red CCLs reach 5.93% and 15.34lmW−1, respectively, which are among the highest reported for white LECs. Furthermore, these devices exhibit bias-insensitive white EL spectra, which are required for practical applications, due to nondoped emissive layers. These results reveal that single-layered blue-emitting LECs combined with red-emitting CCLs are one of the potential candidates for efficient and color-stable white light-emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.