Abstract
Common corn rust and southern corn rust, two typical maize diseases during growth stages, require accurate differentiation to understand their occurrence patterns and pathogenic risks. To address this, a specialized Maize-Rust model integrating a SimAM module in the YOLOv8s backbone and a BiFPN for scale fusion, along with a DWConv for streamlined detection, was developed. The model achieved an accuracy of 94.6%, average accuracy of 91.6%, recall rate of 85.4%, and F1 value of 0.823, outperforming Faster-RCNN and SSD models by 16.35% and 12.49% in classification accuracy, respectively, and detecting a single rust image at 16.18 frames per second. Deployed on mobile phones, the model enables real-time data collection and analysis, supporting effective detection and management of large-scale outbreaks of rust in the field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have