Abstract

Electronic polarization plays a pivotal role in determining the molecular energy levels of organic semiconductors (OSCs) in the condensed phase. However, accurate estimation of the electronic polarization energy is a challenging task due to the intricate imbalance between the precision and efficiency. In this work, we have developed an embedding charge quantum mechanics/continuum dielectric (EC-QM/CD) model, which enables quantitative evaluation of the ionization potential (IP), electron affinity (EA), and polarization energy in both crystalline and amorphous solids for OSCs. The benchmark calculations on both p-type OSCs of oligoacenes and n-type OSCs of A-D-A small-molecule acceptors show that the values of IP, EA, and polarization energy obtained by EC-QM/CD are in good accordance with the experimental measurements or the results by high-precision methods, while the computational costs are substantially reduced. Given its balance between the accuracy and efficiency, the EC-QM/CD model exhibits considerable potential to broaden the applications in the field of OSCs, for instance, high-throughput screening by using solid-state energy levels or polarization energies as critical descriptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.