Abstract

AbstractA stochastic network in which nodes fail randomly with known probabilities is modeled by a probabilistic graph with unreliable nodes and perfect edges. The K‐terminal reliability of such a network is the probability that there exists a Steiner tree connecting a subset of the nodes K (target nodes). Although the K‐terminal reliability problem has been widely studied for networks with unreliable links, very little is known about the problem for networks with unreliable nodes. We show that computing this measure is computationally difficult, in particular #P‐complete. We then present efficient algorithms for the K‐terminal reliability problem on two classes of perfect graphs; interval graphs and permutation graphs. Computing the reliability on these two classes of graphs is of particular interest since the problem remains #P‐complete for larger classes in the hierarchy of perfect graphs, namely, comparability and chordal graphs. The model presented in this paper is appropriate for radio broadcast networks and for fault‐tolerant multiprocessor networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.