Abstract

Sodium oleate (NaOL) is commonly employed as a traditional organic collector during the flotation process of phosphate ore. However, the residual NaOL in mineral processing wastewater not only poses a great threat to the environment, but also reduces the qualities of subsequent flotation products. In this study, an effective adsorbent graphene oxide/polyethyleneimine (GP) composite hydrogel was prepared and applied for the adsorption of NaOL. The successful association between GO and PEI was elucidated through various characterizations. Further to that, the adsorption performance was systematically determined through adsorption isotherm, adsorption kinetics, co-existing ions and reusability experiments. The results clearly demonstrated that the adsorption behavior of NaOL could be well described by both pseudo-second-order (PSO) kinetic and Langmuir isotherm models. GP composite hydrogel was able to achieve superior NaOL adsorption with an excellent adsorption capacity (295.95 mg/g) and a quick kinetic (120 min). The existence of competitive ions, such as CO32−, SO42− and PO43−, had a negative effect on NaOL adsorption. The mechanism investigation suggested that chemical adsorption and hydrogen bonds were central and played imperative roles for the adsorption of NaOL on GP composite hydrogel. Overall, the current work provides a valuable reference for the efficient adsorption of NaOL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.