Abstract

Nanoscale zero-valent iron (nZVI or Fe0) can rapidly reduce Cr(VI) contaminants in the water environment, but the agglomeration and passivation of the Fe0 system have adverse effects on its application. In this study, a novel mesoporous Santa Barbara Amorphous-15 supported Fe/Ni bimetallic composite (SBA-15@Fe/Ni) is proposed to remove Cr(VI). The proposed material can enhance the stability and removal capacity of the nZVI system. The results show that the unique six-way through-hole structure of SBA-15 provides a place for the dispersion of Fe0 particles. Meanwhile, SBA-15 effectively alleviates the accumulation of Fe0 particles. The removal efficiency of SBA-15@Fe/Ni is better than two single systems (SBA-15 and Fe/Ni). The removal efficiency of SBA-15@Fe/Ni towards Cr(VI) can reach 97.62% after 60 min at pH 4.0. SBA-15@Fe/Ni still maintains excellent performance in the presence of various competitive ions (Cl-, SO42-, CO32–, NO3–). At 298 K, the maximum removal capacity of SBA-15@Fe/Ni towards Cr(VI) is 180.99 mg/g. The possible removal process of SBA-15@Fe/Ni towards Cr(VI) is divided into the following steps: First, Cr(VI) is attracted into the vicinity of the SBA-15@Fe/Ni channel by the electrostatic attraction; Second, the reduction of Cr(VI) occurs after contacting with the Fe/Ni system, and its driving force mainly comes from nZVI and Fe(II); Furthermore, the introduction of Ni can promote Cr(VI) reduction through electron transfer and catalytic hydrogenation. In conclusion, adopting SBA-15@Fe/Ni to treat chromium contamination is an effective and promising approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.