Abstract

On the face of impending global water resources, developing low-cost and efficient water treatment technologies and materials thereof is highly important. Herein, we explore the adsorption capacity and antibacterial properties of CuO-ZnO (CZ) composite nanofibers. The ultrafine nanofibers were fabricated using simple and inexpensive electrospinning technique and were further characterized using Field Emission-Scanning Electron Microscope (FE-SEM), Transmission electron microscope (TEM) and X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform Infrared Spectroscopy (FTIR). When employed as nanoadsorbents, CZ nanofibers exhibited excellent adsorption capacity for congo red dye. Adsorption Isotherms and kinetics were performed to determine the maximum adsorption capacity and the rate of adsorption, respectively, depicting the better efficiency of composite nanofibers as compared to their single counterparts. The mechanism of adsorption is also proposed with the evaluation of diffusion studies. The second part of this study deals with the examination of antibacterial activity of CZ composite nanofibers against antibiotic resistant GFP-E.coli and S. aureus. The antibacterial efficacy was monitored by visual turbidity assay, SEM analysis and reactive oxygen species (ROS) determination. Hence, such nanofibers have been explored as a single platform for the removal of biological as well organic contaminants so as to make them potential in the field of water remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.