Abstract
The active SLAM problem considered in this paper aims to plan a robot trajectory for simultaneous localization and mapping (SLAM) as well as for an area coverage task with robot pose uncertainty. Based on a model predictive control (MPC) framework, these two problems are solved respectively by different methods. For the uncertainty minimization MPC problem, based on the graphical structure of the 2D feature-based SLAM, a non-convex constrained least-squares problem is presented to approximate the original problem. Then, using variable substitutions, it is further transformed into a convex problem, and then solved by a convex optimization method. For the coverage task considering robot pose uncertainty, it is formulated and solved by the MPC framework and the sequential quadratic programming (SQP) method. In the whole process, considering the computation complexity, we use linear SLAM, which is a submap joining approach, to reduce the time for planning and estimation. Finally, various simulations are presented to validate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.