Abstract

The application of Cu2+/peroxymonosulfate (PMS) process for the elimination of refractory pollutants in industrial wastewater is limited by the slow transformation from Cu2+ to Cu+. In this research, hydroxylamine (HA) was employed to improve the degradation capacity of the Cu2+/PMS process. Rhodamine B (RhB) was selected as the target compound to indicate the performance of HA/Cu2+/PMS process. Compared with the Cu2+/PMS process, the reduction of Cu2+ to Cu+ was effectively promoted by HA in the HA/Cu2+/PMS process, which increased the decomposition rate of PMS by 29.2%, correspondingly, promoted the removal rate of RhB by 77.6%. The degradation of RhB followed pseudo-second-order kinetics in the proposed process. The active species analysis subsequently indicated hydroxyl radicals (·OH) and sulfate radicals (SO4·-) played important roles for degrading RhB with ·OH as the dominant active radical. The effects including initial pH, RhB concentration, PMS concentration, and Cu2+ concentration on the degradation of RhB were further investigated and discussed in detail. Additionally, the HA/Cu2+/PMS process exhibited effective RhB removal in simulated wastewater. From the perspective of waste utilization (Cu2+) and the remediation of organic contamination, the work would provide a valuable and promising process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call