Abstract

This paper presents an efficient two-dimensional (2D) direction of arrival (DOA) estimation method, termed as decoupled projected atomic norm minimization (D-PANM), to solve the angle-ambiguity problem. It first introduces a novel atomic metric via projecting the original atom set onto a smoothing space, based on which we formulate an equivalent semi-definite programming (SDP) problem. Then, two relatively low-complexity decoupled Toeplitz matrices can be obtained to estimate the DOAs. We further exploit the structural information hidden in the newly constructed data to avoid pair matching for the azimuth and elevation angles when the number of sensors is odd, and then propose a fast and feasible decoupled alternating projections (D-AP) algorithm, reducing computational complexity to a great extent. Numerical simulations are performed to demonstrate that the proposed algorithm is no longer restricted by angle ambiguity scenarios, but instead provides a more stable estimation performance, even when multiple signals share the same angles in both azimuth and elevation dimensions. Additionally, it greatly improves the resolution, with control of the computation load compared with the existing atomic norm minimization (ANM) algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call