Abstract
The efficiency of methods in adequately interpreting the nutritional status of Eucalyptus spp. rooted cuttings remains unknown. The aim was to evaluate the quality of diagnoses obtained using the critical level (CL), diagnosis and recommendation integrated system (DRIS) and compositional nutrient diagnosis (CND) methods to assess the nutritional status of Eucalyptus spp. rooted cuttings, based on two different yield indicators. The data were obtained from commercial nursery and calibration experiments, using seven nutrients as treatments (N, P, K, Mg, Ca, B and Fe) and four concentrations per nutrient, arranged in randomized blocks, with four repetitions. The Eucalyptus spp. clone used in the experiments was AEC 0144. A total of 222 rooted cuttings were obtained from the experimental area and commercial nurseries and the following were determined: leaf nutrient content, whole plant dry matter (DM) content and the Dickson quality index (DQI). Diagnostic accuracy in the experimental plots was ascertained by comparing the diagnosis with plant response as a function of adding the corresponding nutrient. Five measures of accuracy were used to test the efficiency of the diagnostic methods: total accuracy, accuracy for deficiency and sufficiency, deficiency ratio, efficiency ratio, and the net increase in in DM and DQI. The performance of diagnostic methods varied between CL, DRIS and CND, and among the nutrients studied. Given that the seedling production system is largely more controlled, where environmental variations are minimal, and considering that the different diagnostic methods exhibited distinct performance in terms of assessing the true nutritional status of eucalyptus rooted cuttings, the CL method is the most indicated for this situation, due to its better performance in evaluating the nutritional status of most nutrients and easy implementation.
Highlights
The eucalyptus growing is dispersed in several regions of the world
Obtaining the critical level (CL) and sufficiency range (SR) for most pf the nutrients considered more responsive in a substrate with nutrient solution (N, P, K, Ca, Mg, B and Fe) is important in assessing the nutritional status of rooted cuttings, especially since these plants are grown in semi-controlled conditions with little interference from the environment on dry matter accumulation
The findings of the present study indicate that the CL method performed well in prognoses because the results of calibration experiments were used in the database, making diagnoses more accurate
Summary
The eucalyptus growing is dispersed in several regions of the world. For adequate crop formation, it is necessary to obtain seedlings with correct nutritional status, which can guarantee greater adaptability to the adverse conditions in the field. The most widely used diagnostic methods to interpret leaf analysis are univariate, namely, critical level (CL) and sufficiency range (SR). For Eucalyptus spp. rooted cuttings there are a number of indications of adequate content for the second and third pair of fully expanded leaves, obtained in controlled experiments only for boron [7] and potassium [8]. Obtaining the critical level (CL) and sufficiency range (SR) for most pf the nutrients considered more responsive in a substrate with nutrient solution (N, P, K, Ca, Mg, B and Fe) is important in assessing the nutritional status of rooted cuttings, especially since these plants are grown in semi-controlled conditions with little interference from the environment on dry matter accumulation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.